symplectic operator - definição. O que é symplectic operator. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é symplectic operator - definição

Symplectic transformation; Symplectic operator

Symplectic matrix         
In mathematics, a symplectic matrix is a 2n\times 2n matrix M with real entries that satisfies the condition
Symplectic geometry         
BRANCH OF DIFFERENTIAL GEOMETRY AND DIFFERENTIAL TOPOLOGY
Symplectic Geometry; Symplectic structure; Symplectic topology
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry was founded by the Russian mathematician Vladimir Arnold and has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.
Transfer operator         
PUSHFORWARD ON THE SPACE OF MEASURABLE FUNCTIONS
Ruelle operator; Perron-Frobenius operator; Perron-Frobenius Operator; Frobenius-Perron operator; Bernoulli operator; Ruelle-Frobenius-Perron operator; Frobenius–Perron operator; Perron–Frobenius operator
In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1, and the corresponding eigenvector is the invariant measure of the system.

Wikipédia

Symplectic matrix

In mathematics, a symplectic matrix is a 2 n × 2 n {\displaystyle 2n\times 2n} matrix M {\displaystyle M} with real entries that satisfies the condition

where M T {\displaystyle M^{\text{T}}} denotes the transpose of M {\displaystyle M} and Ω {\displaystyle \Omega } is a fixed 2 n × 2 n {\displaystyle 2n\times 2n} nonsingular, skew-symmetric matrix. This definition can be extended to 2 n × 2 n {\displaystyle 2n\times 2n} matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields.

Typically Ω {\displaystyle \Omega } is chosen to be the block matrix

where I n {\displaystyle I_{n}} is the n × n {\displaystyle n\times n} identity matrix. The matrix Ω {\displaystyle \Omega } has determinant + 1 {\displaystyle +1} and its inverse is Ω 1 = Ω T = Ω {\displaystyle \Omega ^{-1}=\Omega ^{\text{T}}=-\Omega } .